
Lecture – 14Lecture – 14

SECTION -C

Getting Started with UNIX

IntroductionIntroduction
UNIX files & Directories
Basic operations on Files
File Permissions

Already covered following topics in Unit -4 i.e.

Th ti l C t f UNIX O STheoretical Concepts of UNIX O.S.
UNIX Files & Directories

Th filThe file
Ordinary files, Device Files, Directory Files.. We’ll discuss
various commands later in this chapter… but that will also be p
a part of this topic.
Directories:
Di S (h P hild R l i hi UNIX filDirectory Structure(the Parent child Relationship-UNIX file
system)
Checking your Directoryg y y
pwd : Checking your current directory
cd : Changing Directory
mkdir : making directories
rmdir: removing directories

Current Directory

Basic Operation on Files:
1. cat : DISPLAYING AND CREATING FILES:

cat is one of the most well-known commands of the UNIX
system. It is mainly used to display the contents of a small
file on the terminal:
$ cat dept.lst
01|accounts|6213
02| |542302|progs |5423
03| marketing | 6521
04|sales | 100604|sales | 1006

cat, like several other UNIX commands, also accepts more
than one filename as arguments:
$ t h 01 h 02$ cat chap01 chap02

Contents of the second file are shown immediately after the
first file without any header information. In other words, cat
concatenates the two files – hence its name.

2. Using cat to Create a File:
t i l f l f ti fil E t thcat is also useful for creating a file. Enter the

command cat followed by > (the right chevron)
character and the filename (for eg. file1):character and the filename (for eg. file1):
$ cat > file1
A > symbol following the command means that the y g
output goes to the filename following it.
[Ctrl – d]
$ _
when the command line is terminated with [Enter] , the

t i h t it t t k i t f thprompt vanishes . cat now waits to take input from the
user. Enter the three lines, each followed [Enter].
Finally press [Ctrl – d] to signify the end of input to theFinally press [Ctrl d] to signify the end of input to the
stream.

3. cp : COPYING A FILE
The cp command copies a file or a group of files. It creates an
exact image of the file on disk with a different name. The syntax
requires at least two filenames to be specified in the command
line. When both are ordinary files, the first is copied to the y p
second:
$ cp chap01 unit1
If the destination file (unit1) doesn’t exist it will first be createdIf the destination file (unit1) doesn’t exist, it will first be created
before copying takes place. If not, it will simply be overwritten
without any warning from the system. So be careful when you
h d ti ti fil J t h k ith th lchoose your destination filename. Just check with the ls

command whether or not the file exists.
If there is only file to be copied, the destination can be either an
ordinary or directory. You then have the option of choosing your
destination filename. The following example shows two ways of
copying a file to the progs directory:py g p g y

$ cp chap01 progs/unit1 chap01 copied to unit1 under progs.
$ cp chap01 progs chap01 retains its name under progs

4. rm: DELETING FILES:
The rm command deletes one or more files. ItThe rm command deletes one or more files. It

normally operate silently and should be used with
caution. The following command deletes three files :
$ rm chap01 chap02 chap03
A file once deleted can’t be recovered. rm won’t

ll di t b t it filnormally remove a directory but it can remove files
from one.
You can remove two chapters from the progsYou can remove two chapters from the progs
directory without having to “cd” to it:

$ rm progs/chap01 progs/chap02 Or $ rm progs p g p p g p p g
chap0[12]
You may sometimes need to delete all files in a directory

t f l ti Th * h d bas a part of clean up operation. The * , when used by
itself, represents all files, and you can then use “rm” like
this:

5. mv : RENAMING FILES
The mv command renames (move files) It has twoThe mv command renames (move files). It has two
distinct functions:
It renames a file(or directory)(y)

It moves a group of files to a different directory.
mv doesn’t create a copy of the file; it merely renames it. No

dditi l i d di k d i iadditional space is consumed on disk during renaming.
To rename the file chap01 to man01, you should use:
$ mv chap01 man01$ mv chap01 man01
If destination file doesn’t exist, it will be created. For the

above example, mv simply replaces the filename in the
i ti di t t ith thexisting directory entry with the new name.

It can also be used to rename a directory for instance pis toIt can also be used to rename a directory, for instance pis to
perdir:

$ mv pis perdir

File Permissions
UNIX h i l d ll d fi d t f i i i i tUNIX has a simple and well-defined system of assigning permissions to
files. Lets issue the ls – l command once again to view the permissions
of a few files:

$ ls –l chap02 dept.lst dateval.sh
-rwxr-xr- - 1 kumar metal 20500 May 10 19:21 chap 02
-rwxr-xr- 1 kumar metal 890 Jan 29 23:17 dateval.sh
-rw-rw-rw- 1 kumar metal 84 Feb 12 12:30 dept.lst

Observe that the first column that represents the file permissions TheseObserve that the first column that represents the file permissions. These
permissions are also different for the three files.

UNIX follows a three-tiered file protection system that determines a file’s
access rights.

To understand how this system works, lets break up the permission string
of the file chap-2 into three groups. The initial - (in the first column)of the file chap 2 into three groups. The initial (in the first column)
represents an ordinary file and is left out of the permissions string:

r w x r – x r - -

Each group here represents a category, that contains three slots,
representing the read, write and execute permissions of the file – in that
order.

r indicates read permission, which means cat can display the files.

w indicates write permission, you can edit such a file with an editor.

x indicates execute permission; the file can be executed as a program.

The shows the absence of the corresponding permissionThe – shows the absence of the corresponding permission.

The first group (rwx) has all three permissions. The file is readable,The first group (rwx) has all three permissions. The file is readable,
writable and executable by the owner of the file, kumar.

The third column shows kumar as the owner and first permissions group
applies to kumar. You have to login with the username kumar for these
privileges to apply to you.

The second (r-x) has a hyphen in the middle slot which indicates theThe second (r x) has a hyphen in the middle slot, which indicates the
absence of write permission by the group owner of the file. This group
owner is metal, and all users belonging to the metal group have read and

t i i l

The third group (r- -) has the write and execute bits absent. This g p ()
set of permissions is applicable to others, i.e. those who are neither
the owner nor belong to the metal group. This category (others) is
often referred to as the world. This file is not world-writable.

You can set different permissions for the three categories of users –
owner group and othersowner, group and others.

Applications in Games
There are lots of fun things and games you can use in UNIX. Most of the

ones listed below are local to Brown University. Try each of these
commands. Check the man pages or the links below if you have
trouble, but note, some of the commands do not have man pages. Have
fun!
banner
figlet
WhatsForDinner
food dilbert
ForecastForecast
fortune say
Xteddy
xdeady
BattleTris
nethack
Netris

billxbill
xblast
xboing
xroach

Research
Unix Commands CCR's computing resources are primarily Linux based and therefore using them requires a basic
understanding of the Unix operating system. Some basic commands are provided below.

Basic Unix Commands CCR Reference Card for Linux/UNIX commands pdf

Show pathname of current directory: pwd

List files: ls

Make a directory: mkdir directory-namey y

Change directory: cd directory-name
Change directory back to home directory: cd

Copy a file: cp old-filename new-filename

View a file:View a file:
cat filename
more filename
less filename

Edit a file:Edit a file:
emacs filename
vi filename

Delete a file: rm filename
Delete a directory (recursively): rm -R directory-name y (y) y

All files and subdirectories are deleted

Move a file: mv old-filename new-filename

Change permissions:
Arguments to chmod command: ugo+-rwx g g

where ugo are user, group and other; rwx are read, write and execute
Add execute permission for yourself: chmod u+x filename
Remove read, write and execute for group and other from a directory its contents:
chmod -R go-rwx directory-name

